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NATIONAL SECURITY FORENSICS 
FY2011 END-OF-YEAR REPORT 

 
B.M. Ng and N.C. Perry  

DESCRIPTION  

The objective of this effort is to research and develop inversion methods for mapping observations to the 
input parameters of the underlying physical system that could have generated these observations. This 
report describes our FY11 progress in developing a surrogate model of the forward model, using this 
surrogate forward model to develop inversion capabilities, and partitioning the input-output space to 
facilitate assessment and implementation of our inversion capabilities, as well as adaptively propose new 
computer code runs to enhance our training data. This work was funded by NA22/SAM in the NN2001-
06 area, under project number LL10-Forensics-PD06.  
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PROJECT NARRATIVE 

1  INTRODUCTION 
The objective of this effort is to research and develop inversion methods for mapping observations to the 
input parameters of the underlying physical system that could have generated these observations. In this 
report, we will use the terms “observation” and “output” interchangeably. 
 
Generally speaking, the inverse problem is to find the inverse of the forward model. From the forward 
model, one can predict observations from input parameters. In our project, the forward model is embodied 
within complex nonlinear computer codes that are treated (for this analysis) as “black box” 
representations of the physical system. While we can run the computer codes to generate “points” in the 
input-output space (each point would be a tuple of input parameter values and their corresponding 
observation parameter values), our particular forward model cannot be analytically expressed, much less 
inverted mathematically, in exact forms. 
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Theoretically, one can approximate the forward model by running the codes multiple times to generate 
many points in the input-output space, then fit a surrogate model to capture the input-output relationship 
reflected in these points. This surrogate model would be used to enable accurate estimation of the 
observation parameters when their values are known only at a finite number of points. However, since 
each computer run is expensive, generating points in the input-output space would require judicious 
choice of the input parameters. Choosing which inputs to run the forward model to maximize gain of 
information about the mapping (from inputs to observations) is key. 
 
In the first year (FY11), the project goal is to deliver a first-cut version of the inversion framework. We 
have taken the approach of: 
1. developing a surrogate model of the forward model 
2. using the surrogate forward model to develop inversion capabilities 
3. partitioning the input-output space in such a way that supports inversion and allows for intelligent 

proposal of new computer code runs (in order to improve the surrogate forward model and 
subsequently the inverse model) 

 
Additionally, we have made progress on characterizing the coverage of the viable input-output space, 
which is necessary to improve the speed and completeness of the assessments that will be made by the 
end-user of these tools. Not all inputs yield viable outputs for the physical system, so analogously, not all 
inputs will result in successful runs by the codes. Being able to know a priori which regions are viable can 
guide effective exploration of the input-output space without wasting time initiating costly runs using 
inputs from non-viable regions.  

Section 2 describes the data available to us during our first-year exercise. Section 3 describes our efforts 
in the development of the surrogate forward model, the inverse model, and strategies for viable space 
coverage. Section 4 describes empirical results. Lastly, Section 5 summarizes future work. 
 
2  DATA 
The data are generated from a complex nonlinear computer code. While there are many input and output 
parameters, we restricted this year’s scope to those pertinent to a small part of domain space. More details 
on the computer code, domain space, and observable data are listed in an annex to this document (LLNL 
document COPJ-2011-0541). 
 
In our first year, we focused on four inputs and four outputs. The four inputs were chosen based on their 
orthogonality (i.e., the input parameters reflect different aspects about the physical system) and the four 
outputs were chosen based on expert knowledge. In future years, we plan to expand our data beyond one 
subclass, as well as examine other inputs and outputs. These planned efforts are outlined in Section 5. 
 
3  METHODS 
As alluded above, the data set consists of tuples of input and output parameters. Each tuple constitutes a 
point in the input-output space and is the result of a single run that requires significant computer resources 
to complete. Thus, populating the entire input-output space by exhaustively running the codes on all 
possible instantiations of the input parameters would be prohibitively expensive.  
 
Our first step was to develop a surrogate model that can capture the forward model.  
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Figure 1. Our forward model is encapsulated in complex, nonlinear computer codes. 
 
Once achieved, we can apply this surrogate model to cheaply populate the rest of the input-output space, 
as well as to summarize our state of knowledge about the input-output mapping. 
 
One might ask “why not develop a surrogate model directly on the inverse model?” While it might seem 
like extra work to develop the surrogate model on the forward model then invert on the surrogate, there 
are two main reasons why this approach is better for long-term development. The primary reason is that, 
if we want to improve the predictive power of the surrogate forward model over a particular region in the 
input-output space, we can easily add more points to that region by running our codes using the input 
values that span that region. If we were to do the same for the surrogate inverse model, this would be 
difficult because we do not have codes that would generate the input values based on the output values. 
(In fact, this is precisely the capability that we are trying to develop.) The secondary reason is that our 
subject matter experts (SMEs), who developed and are maintaining the codes, have in-depth knowledge 
of the forward model (which is a “black box” to us but not to them). Their SME insights, in the form of 
functional relationships between groups of input/output variables, can be elicited and incorporated to 
improve our surrogate forward model. Again, this will be difficult if we are developing the surrogate 
inverse model directly because the SMEs can share more about the forward model than the inverse model. 
In sum, the knowledge elicitation is easier in the forward direction than the inverse direction. The 
underlying mathematical theories behind the model development, however, are still transferable so we 
can leverage the same algorithms for both the forward and inverse models. 
 
Before we proceed, we introduce some notation. Let 𝒙! ,𝒚! !!!!  denote the data where 𝒙! ∈  ℝ! and 
𝒚! ∈  ℝ!. The forward model 𝑓 is a mapping from inputs to outputs as follows: 𝒚! = 𝑓(𝒙!).  

3.1  Forward Mapping 
For this task, we first implemented an inverse distance weighting method, known as the Shepard’s 
method, for multivariate interpolation between 𝒙! to 𝒚!. In any inverse distance weighting method, the 
interpolating function 𝑓 is constructed as an approximation to 𝑓, which takes on the general form of: 
 

𝒚 = 𝑓 𝒙 =  
𝑤!𝒚!

𝑤!!
!!!

!

!!!

 

 
Given the test input 𝒙, the interpolated output 𝒚 (distinct from the actual output 𝒚) is computed as a 
weighted sum of the “training” output values 𝒚! !!!!  which were derived from the data. The weights in 
turn are computed from the test input 𝒙 and the “training” inputs 𝒙! !!!! , which the Shepard’s Method 
[Shepard, 1968] defines as: 
 

𝑤! =  
1

𝑑(𝒙, 𝒙!)!
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𝑑(𝒙, 𝒙!)! denotes the distance from 𝒙 to 𝒙! raised to the 𝑝-th power. Thus, the weight increases the 
distance decreases. The parameter 𝑝 affects the degree of smoothing in the interpolation. Higher 𝑝 values 
will weight contributions from nearby points more heavily. 
 
There is also a modified version of the Shepard’s Method [Franke & Nielson, 1980], which uses only the 
nearest outputs within a R-sphere for interpolation. The weights in this case are given as: 
 

𝑤! =  
𝑅 − 𝑑(𝒙, 𝒙!)
𝑅𝑑(𝒙, 𝒙!)

!

 

 
𝑅 is defined as the maximal distance, 𝑅 = max!   𝑑 𝒙, 𝒙! . The modified Shepard’s Method imposes 
symmetric weights around each training points and has been found to outperform the original Shepard’s 
Method in practice. This was also validated in our effort so we decided to pursue improvements to the 
modified Shepard’s Method.  
 
A challenge in our data is that the input variables are of different magnitudes thus resulting in distances 
that are greater than two orders of magnitude in some cases. In essence, the dimension with the largest 
magnitude was ignored in the interpolation function. To mitigate this, we normalized the input variables 
to within 0 and 1.  
 
Additionally, since our input-output mapping is multi-dimensional and highly nonlinear, far away points 
are virtually of no use in providing information about the test point. Thus, we restricted the interpolation 
to a set of local “grid” points (whose input values enclose the training point’s input) for improved 
interpolation accuracy and speed. The assignment of grid points to a particular test point was achieved 
through partitioning the input space into disjoint polytopes1. Figure 2 shows a two-dimensional 
representation of this partitioning. 
 

 
Figure 2. Partition of a two-dimensional input space. 

 
For simplicity, we have chosen to work with hypercube-like polytopes. In four dimensions, each of these 
polytopes has 24 or 16 vertices. (For further enhancement to interpolation accuracy, we can go beyond 
just the vertices, but choose additional points within or at the surface of the polytopes. Such a tradeoff 
study of improved accuracy as a function of additional points is in our plans for future work.) The general 
idea for interpolating the output value of a given test point is as follows:  

                                                        
1 A polytope is a geometric object with flat sides that can exist in any number of dimensions. A 2-dimensional 
polytope is a polygon and a 3-dimensional polytope is a polyhedron. 
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1. We first lay the ground work by partitioning the input space into disjoint polytopes. We apply the 

computer codes to run the input values given by the polytopes’ vertices. The resulting data becomes 
the “database” of points on which our interpolation-based surrogate forward model is based. We do 
this only once unless we find that the database of points yields poor interpolation performance. 

 
Figure 3a. The partition defines the points (in red) to be run by the computer codes. 

 

 
Figure 3b. Each computer run will yield a corresponding point in the output space for each point in the 

input space. The set of inputs and outputs constitutes the training data. 
 

2. Given a test input, our goal is to use our surrogate forward model to infer its output. We first look up 
the (unique) polytope encloses the test point’s input. Then we apply the modified Shepard’s method 
on this polytope’s points only.  
 

𝒚 = 𝑓 𝒙 =  
𝑤!𝒚!

𝑤!!∈𝒫!∈𝒫
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Figure 4. Given the test point, whose input is represented as a black point within the yellow rectangle, 

only the green points which comprise the corners of the rectangle, will be used in the interpolation. 
 
This is distinct from the traditional application of the modified Shepard’s method, which bases its 
interpolation on the entire set of training points. Our variant of the modified Shepard’s method 
restricts the interpolation to the polytope’s points, which improves speed as well as accuracy in our 
specific multi-dimensional, highly-nonlinear problem.  

An additional advantage to partitioning the input space is to be better able to characterize regions of high 
nonlinearity or sensitivity, which would require more training points and/or sophisticated models with 
higher degrees of freedom, for improved approximations. 
 

 
Figure 5. Partition of a two-dimensional input space with confidence of output estimation assigned to 

each polytope. 

3.2  Inverse Mapping 
In the inverse direction, from outputs to inputs, the polytope-partition-based interpolation scheme 
developed for the forward direction does not readily apply. The reason is as follows: If we partition the 
output space into polytopes and wish to use the polytope vertices as the training data, there will be no 
direct way for us to get the corresponding input values because our codes only go in the forward 
direction, i.e., the codes take inputs and return outputs. 
 
Alternatively, we could try to choose the input values that, when run by the codes, will return output 
values that are in a quasi-grid formation. Again, to be able to choose such input values would require us 
to have already solved the inversion problem, which is the very thing we are trying to address. 
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Figure 6. If we partition the output space via a regular grid, it would be difficult to obtain training data 

because we have no easy means of recovering the inputs that correspond to the outputs. 
 
Moreover, it would be of added benefit if we can utilize the training data that was already established for 
the polytopes in the surrogate forward model, instead of having to establish a new set of training data for 
the inverse direction. 
 
With this consideration, we realized that, in order to make our variant of the modified Shepard’s Method 
work in the inverse direction, all we really needed was to enclose our test output in some closed region 
and to be able to find this region’s image in the input space. Then, we would be able to proceed as before 
by restricting our interpolation to points belonging to this region. 
 
What this means is that we do not need polytope partitioning in the output space. Instead, we can use the 
training data established for the polytopes in the surrogate forward model to define regions over the 
output space. For a given polytope in the input space, its vertices (if they represent valid inputs in the 
physical system) will map to points in the output space. These points in the output space can be used to 
create an n-dimensional convex hull2.  
 

 
Figure 7a. The data generated for the surrogate forward model can be used for the inverse model… 

 
 

                                                        
2 A convex hull for a set of points X in a real vector space V is the minimal convex set containing X. When the set X 
is two-dimensional, imagine stretching a rubber band to enclose the entire set X then releasing it; the region defined 
by the taut rubber band is the convex hull of X. In this year’s work, we are dealing with four-dimensional convex 
hulls because our output space is four-dimensional. 
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Figure 7b. … so long as we decompose the output space into convex hulls that correspond to the 

polytopes from the partition in the input space. (Only select convex hulls and their polytopes are shown.) 
 
Unlike the input-space polytopes, the output-space convex hulls could be overlapping. This means, for a 
given test output, there might be multiple convex hulls that enclose it. With this caveat, we are now ready 
to proceed as in the forward case.  
 
1. For a given test output, the goal is to find its corresponding output. We first examine where this test 

output lies and return any convex hull that encloses the test output. For each of these convex hulls, we 
apply the modified Shepard’s method on the vertices of the convex hull. In the equation below, we 
denote the 𝑘-th convex hull as 𝒞!. 
 

𝒙! = 𝑓!inv 𝒚 =  
𝑤!𝒙!

𝑤!!∈𝒞!!∈𝒞!

 

 

𝑤! =  
!!!(𝒚,𝒚!)
!"(𝒚,𝒚!)

!
with  𝑅 = max!   𝑑 𝒚,𝒚!  

 
2. If there are 𝐾 convex hulls that enclose the test output, then we will have 𝐾 estimates of the input 

parameters, 𝒙! !!!
! . Since different input values can lead to the same output values in the physical 

system (i.e., the forward model is not one-to-one), these 𝐾 estimates should not be averaged but 
returned as a histogram to convey a distribution over potential inputs that could have generated the 
test output. (This is part of near-future work – currently, we utilize all the points from the 𝐾 convex 
hulls to compute one single estimate for the inputs. We do not yet compute a separate estimate for 
each of the 𝐾 convex hulls and perform a histogram on the estimates’ values.) 
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Figure 8. In this example, three convex hulls (with purple, blue and black edges; region highlighted in 

yellow) enclose the test output (in black). Thus, the vertices of these three convex hulls (in green), as well 
as their images in the input space, are used in computing the inverse of the test output. 

3.3  Viable Input-Output Space 
So far, we have not discussed the fact that not all inputs map to outputs. Some input values represent 
situations that are not inadmissible in practice. Hence, when the codes are set with these inputs, failed 
runs result because the inputs are outside of allowable parameter values. 
 
Returning to our discussion of the surrogate forward model, imagine that, if we had unknowingly 
partitioned over some non-viable space, then we might have at least one polytope with vertices that do not 
have corresponding outputs. A test input assigned to this polytope will have fewer points for its 
interpolation of the output, because we can only use viable points (i.e., those with inputs and outputs) in 
the equation for the Shepard’s Method. If many vertices in this polytope are non-viable, we might run into 
extrapolation instead of interpolation, and estimation performance could quickly degrade.  
 
An alternative is to replace each non-viable point with a viable point within the same vicinity, so we are 
still using the same number of points for interpolation. In effect, we are moving the boundary of the 
polytope inward to encompass only the viable space. This boundary shift would likely cause the polytope 
to no longer be a polytope, but a higher-dimensional convex hull. But since we have already gained 
experience working with convex hulls in the inverse model, this approach is doable. 
 
To summarize, this part of the effort is focused on identifying the viable input-output space, so that we 
can efficiently populate more points in this space to ensure that we are interpolating with a minimally 
required number of training points for each test point. This in turn improves interpolation estimates, 
which will improve the accuracy of the surrogate forward model and the inverse model. 
 
A failed run takes significantly less time than a successful run, so we decided on the approach of closing 
in on the viable space from points that are in the non-viable space. We make the assumption that, for our 
particular subclass, there is only one contiguous viable space and there is also only one contiguous non-
viable space. Our approach to identify and populate the viable space is as follows: 
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1. For each input variable, we elicit (from the SME) a minimum value and a maximum value that are 
outside of that input variable’s admissible range of values.  

2. Using these min/max values for the input variables, we can define a polytope in the input space. 

 
Figure 9. A polytope is defined in the input space based on the minimum and maximum values of each 
input. This figure is a two-dimensional abstraction of our four-dimensional input space. “minInN” and 

“maxInN” denotes the respective minimum and maximum values of the input N. 
 

3. We compute the centroid, or elicit (from the SME) a user-specific centroid, within this polytope. We 
run the code on the centroid to ensure that it defines a viable point.  

 
Figure 10. The user-defined centroid does not need to be the same as the mathematically defined 

centroid of the polytope. The centroid must be a viable point. 
 

4. For each of the 16 vertices in the polytope, we form a vector from the vertex to the centroid. 

 
Figure 11. Here, we show a two-dimensional perspective depicting four “vertex-to-centroid” vectors. Our 

4-dimensional polytope has 16 such vectors in total.3 
 
5. For each of the 16 vertex-to-centroid vectors, we incrementally “move in” along this vector and 

sequentially run the code on new inputs that lie on this vector until the code returns a successful run. 
The input/output tuple corresponding to the successful run now defines a viable point in the space.  

                                                        
3 For a general 𝑛-dimensional cube, the number of “𝑘-cells” is !!

!! !!! !
×2!!!. A 0-cell is a vertex; a 1-cell is an 

edge; a 2-cell is a face, etc. Our 4-dimensional polytope has 16 vertices, 32 edges and 24 faces. 
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Figure 12. Inputs along these “vertex-to-centroid vectors” are explored sequentially until a viable point is 

found. 
 
6. Once a viable point is achieved on each of the 16 vertex-to-centroid vectors, we would have 16 viable 

points on which we can define a convex hull of potential viable space. 

 
Figure 13. The result of this procedure is a tighter “bounding box” in the form of a convex hull that 

encloses the estimated viable region. 
 

To gain a more faithful coverage of the viable space, we also checked for viable points near the boundary 
of this convex hull, as follows: 
 
7. For each edge of the convex hull, we trisect the edge into three same-length segments via two vectors 

from centroid to the edge.  

 
 

Figure 14. Each edge of the convex hull is trisected. Our 4-dimensional polytope has 64 such “edge-to-
centroid” vectors in total.4 

 
8. The intersection between the edge and the vector specifies an input point. We run the code on this 

input point to check for its viability.  

                                                        
4 Our 4-dimensional polytope has 32 edges (see footnote [3]). For each edge, we create two “edge-to-centroid” 
vectors, so there are 32×2=64 such vectors. 
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Figure 15. The trisection points are the starting point for the viable space exploration. We apply the inputs 

at these points to the computer runs first. 
 
9. If the input point is viable, then we incrementally “move out” along the vector and sequentially run 

the code on new inputs that lie on this vector until the code returns an unsuccessful run. Otherwise, if 
the input point is not viable, then we incrementally “move in” along the vector until the code returns a 
successful run. The input/output tuple corresponding to the last successful run now defines a viable 
point and replaces the original input point on the convex hull edge.  

 
 

Figure 16. We explore inward if the trisection points are non-viable, and explore outward if the trisection 
points are viable. This strategy ensures we are closing in on the boundary of the viable region. 

 
10. Once this process is completed for all the “edge-to-centroid” vectors, the boundary of the viable space 

might no longer be a convex hull. 
 

 

Figure 17. At the end of this procedure, we get an even tighter “bounding shape” that encloses the 
estimated viable region. However, this shape might no longer be a convex hull. 

 
To further improve coverage of the viable space, we have also repeated the above procedure for vectors 
that emanate from the centroid to (quasi-equidistant) points on the faces of the resulting region (that 
encloses the viable space). Currently, we restrict the search to four vectors per face. 
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Figure 18. Additionally, we repeat this exploration procedure along each set of four vectors that emanates 
from the centroid to the face. Our 4-dimensional polytope has 96 such “face-to-centroid” vectors in total.5 

 

4  RESULTS 
We have evaluated our surrogate forward model, our inverse model and solutions for the coverage 
problem and the results are presented in this section. 

4.1  Forward Mapping 
We evaluated three methods:  
1. the traditional application of the modified Shepard’s Method which utilizes all the training points 
2. the method in (1) with normalized inputs 
3. the method in (2) using only the points from the polytope assigned to the test input 
We inferred each output separately, as well as all outputs at once. 

The training data were generated from using the polytope vertices (as inputs to the codes) and the test data 
were generated from points within the polytopes, so the training and test data sets are completely disjoint. 
The training data contains approximately the same number of points as the test data. (More detail is 
available in the LLNL document COPJ-2011-0541.) Only the inputs from the test data are used in the 
methods. The outputs from the test data are used as “ground truth” to compute the error between the 
inferred output values from the actual output values. The following table shows the median error, for 
separate output parameters as well as the aggregate, across all three methods described.  
 

Output(s) Modified Shepard’s Method w/ normalization 
w/ normalization and using 

only polytope points 
1 only 1700% 1700% 14% 
2 only 3800% 1400% 21% 
3 only 34% 8% 11% 
4 only 74% 34% 17% 

All 74% 34% 17% 
 
Our developed method, as shown in the last column, reflects the best performance since it exploits 
locality in its inference of the output parameters and has the fastest runtime because it uses less points for 
interpolation. 

4.2  Inverse Mapping 
As before, we evaluated three methods:  
1. the traditional application of the modified Shepard’s Method which utilizes all the training points 
                                                        
5 Our 4-dimensional polytope has 24 faces (see footnote [3]). For each face, we create four “face-to-centroid” 
vectors, so there are 24×4=96 such vectors. 
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2. the method in (1) with normalized outputs and using the training points from the multiple convex 
hulls that enclose the test output 

3. the method in (1) with normalized outputs and using the single convex hull that is the image of the 
polytope that encloses the true input of the test point 

In practice, method 3 is not really possible since we would not know which convex hull is the image of 
the polytope that encloses the true input. So it is provided as an estimate of a best-case result using this 
method. Like before, we inferred each output separately, as well as all outputs at once.  

For the inversion, the same training and test data sets for evaluating the forward model were used. As 
before, the training data contains approximately the same number of points as the test data; the points are 
distinct. (More detail is available in the LLNL document COPJ-2011-0541.) In contrast to the forward 
model evaluation, only the outputs from the test data are used in the methods. The inputs from the test 
data are used as “ground truth” to compute the error between the inferred input values from the actual 
input values. The following table shows the median error, for separate output as well as the aggregate, 
across all three methods described.  
 

Input(s) 
Modified Shepard’s Method 

in the inverse direction 

w/ normalization and using 
points from all the convex 

hulls the enclose the test 
output 

w/ normalization and using 
only the single convex hull 
that encloses the test output 
and is also the true image of 

the polytope that encloses 
the true input 

1 only 19% 17% 12% 
2 only 53% 41% 27% 
3 only 72% 70% 38% 
4 only 49% 40% 20% 

All 51% 41% 21% 

 

4.3  Viable Input-Output Space 
The viable space methods described above have been applied in the same part of domain space that we 
tested our inversion models on. A new set of input parameters has been defined. We plan to run our 
complex nonlinear computer code using these input parameters and to repeat our surrogate and inverse 
analysis with the new data, but this has not yet been completed.  
 
5  DISCUSSION & FUTURE WORK 
We have accomplished a first-cut version of the inversion framework. Along the way, we have developed 
a surrogate of the forward model and implemented methods to infer the boundary of the viable input-
output space. Our decision to use a partition-based design would facilitate adaptive sampling of the viable 
space and help policy-makers with quickly coming up with exclusion assessments further down the 
pipeline. 
 
Ideas for future work include:  
1. Continue to expand the coverage of viable space by proposing more inputs for new data 
2. Perform a more complete analysis of the current data, such that we can attribute confidence to each 

polytope or convex hull in the partition 
3. Explore other surrogate modeling methods, such as kriging and Gaussian processes 
4. Exploit functional relationships between system variables to improve modeling and inference 
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Unclassified 

5. Further improve our application or implementation of the Shepard’s Method 
6. Expand analysis to more inputs and outputs 
7. Expand analysis to additional subclasses in the physical domain 
8. Understand the unique properties of the data, such as how the transformation of a regular grid in the 

input space can map to a non-disjoint grid in the output space, as well as any sparse structures that 
can be exploited 
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